Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Avicenna J Phytomed ; 13(3): 290-301, 2023.
Article in English | MEDLINE | ID: mdl-37655004

ABSTRACT

Objective: Hesperetin (Hst) has shown several pharmacological effects. The efficacy of Hst is highly restricted in vivo due mainly to poor bioavailability. This investigation was intended to compare the influence of Hst and nano-Hst treatment on 6-hydroxydopamine (6-OHDA)-induced behavioral deficits and oxidative stress in rats. Materials and Methods: Forty-two Wistar male rats were equally assigned to 6 groups: control, 6-OHDA, Hst5, Hst10, nano-Hst5, and nano-Hst10. Treatment with Hst and nano-Hst was initiated 1 day after the intrastriatal injection of 6-OHDA and continued for 28 days. Behavioral deficits were evaluated using apomorphine-induced rotation test (AIRT), narrow beam test (NBT) and novel object recognition test (NORT), and the hippocampus and striatum were used to evaluate oxidative stress-related parameters. Results: The rats injected only with 6-OHDA showed learning and memory deficits but Hst and nano-Hst treatments improved it (p<0.001). Compared to the control group, a marked promotion in Malondialdehyde (MDA) levels along with a marked reduction in activities and gene expression of antioxidant enzymes and reduced glutathione (GSH) levels in the hippocampus and striatum were observed in the 6-OHDA group (p<0.01). However, administration of Hst and nano-Hst remarkably diminished MDA levels (p<0.01), and significantly increased the activities (p<0.01) and gene expression of antioxidant enzymes (p<0.05) and GSH levels (p<0.01) compared to the 6-OHDA group. In most parameters, nano-Hst has shown better therapeutic effects than Hst. Conclusion: Our findings reveal that Hst can be considered as a potential candidate for the treatment of neurodegenerative diseases and that nano-Hst may have better bioavailability.

2.
Stem Cells Int ; 2021: 3828777, 2021.
Article in English | MEDLINE | ID: mdl-34630572

ABSTRACT

The appropriate endodontic material should eliminate the infection and inflammation to provide a situation for regeneration and healing of pulp tissue besides biomineralization. Chrysin is one of the active ingredients of plant flavonoids, which has significant anti-inflammatory and antimicrobial properties. In the present study, this natural substance was evaluated for antioxidant, anti-inflammatory, and mineralization properties on dental pulp stem cells (DPSCs). SEM, FTIR, and TGA tests were used to determine the successful synthesize of chrysin-loaded scaffolds. The antimicrobial effects of the synthesized scaffold against Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis were assessed by the agar diffusion test and live/dead assay. The proliferation of DPSCs on these scaffolds was determined by the MTT assay, DAPI staining, and DNA extraction. Moreover, the antioxidant and anti-inflammation activity of chrysin-loaded scaffolds on inflamed DPSCs was evaluated. Alkaline phosphatase activity and Alizarin Red S Stain tests were done to evaluate the mineralization of DPSCs seeded on these scaffolds. The chrysin-loaded scaffolds reported antimicrobial effects against evaluated bacterial strains. The proliferation of DPSCs seeded on these scaffolds was increased significantly (p < 0.05). The TNFα and DCF levels in inflamed DPSCs showed a significant decrease in the presence of chrysin-loaded scaffolds (p < 0.05). The ALP activity and formation of mineralized nodules of DPSCs on these scaffolds were significantly increased compared with the control group (p < 0.05). These results indicated that chrysin as an ancient therapeutic agent can accelerate the healing and regeneration of damaged pulp tissue, and this active ingredient can be a potential natural substance for regenerative endodontic procedures.

SELECTION OF CITATIONS
SEARCH DETAIL
...